Mql5官网 Discrete wavelet transform 外汇EA

Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
Mql5官网 Discrete wavelet transform 外汇EA
此内容为免费资源,请登录后查看
0积分
免费资源

如果免费资源下载的文件为TXT文档

请联系站长更新!站长微信:Lv596999  Telegram:@eapoj

“Mql5官网”板块的EA基本都有,大部分是无限制NODLL版,NODLL版本MT1420升级,大多数不可用!这些EA来源为国外花钱买过来的

有需要,请联系站长!

“EA测评”板块资源全部现有,看见不错的,可以联系站长看EA在确定是否收费

“无限制EA”板块,大部分免费,下载文件全部存在,都可以免费下载

站长硬盘EA太多,因大部分时间做交易,做风控,没太多时间更新下载地址,请谅解!

需要更新下载文件,请联系站长微信!国外朋友请联系Telegram。


The Discrete wavelet transform indicator is an enhanced implementation of the numerical and functional analysis for MetaTrader 4, the discrete wavelet transform method (DWT). The specific feature of DWT is the way the wavelet is represented in the form of a discrete signal (sample). DWT is widely used for filtering and preliminary processing of data, for analyzing the state and making forecasts for the stock and currency markets, for recognizing patterns, processing and synthesizing various signals, for example, speech and medical signals, for solving the problems of image compression and processing, in learning neural networks and in many other cases.

The Discrete wavelet transform indicator is a filter, which is used for finding optimal market entry and exit points in trending conditions. It allows for more accurate forecasting and analysis of the current and emerging trend.

Discrete wavelet transform includes several methods for filtering the analyzed signal.

  • 1. Haar (haar)
  • 2. Daubechies (db1, db2, db3, db4, db5, db6, db7, db8, db9, db10)
  • 3. Coiflet (coif1, coif2, coif3, coif4, coif5)
  • 4. Biorthogonal (bior11, bior13, bior15, bior22, bior24 и др)
  • 5. Reverse Biorthogonal (rbior11, rbior13, rbior15, rbior22, bior24 и др)

as well as the calculation options and final filter presentation variants

  • 1. DWT is discrete wavelet transform
  • 2. MODWT is discrete wavelet transform with overlap
  • 3. SWT is stationary wavelet transform

Filters differ in basic functions, wavelet transform coefficients, as well as calculation methods (mainly iterative). Each filter has its own characteristics in the time and frequency space. The use of different filters allows identifying certain properties of the analyzed signal.

The number of wavelets used in signal analysis determines the level of decomposition. The accuracy of the signal presentation decreases on higher levels of decomposition, but the possibility of filtering the signal at a higher quality with better noise removal and efficient compression increases.

Adjustable Parameters

  • type – calculation type (0-DWT, 1-MODWT, 2-SWT);
  • filter – filter type;
  • indicator – indicator used for transform (0-1);
  • length – indicator length;
  • J – the level of decomposition.

图片[1]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[2]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[3]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[4]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[5]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[6]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站
图片[7]-Mql5官网 Discrete wavelet transform 外汇EA-EA侦探社 - 全球领先的MQL5官网外汇EA机器人MT4自动化交易EA资源免费分享网站

© 版权声明
THE END
喜欢就支持一下吧
点赞61 分享
相关推荐